PTH-Lowering Agents

Dr Reyhane Motamedi fard
Assistant Professor Of Nephrology
Isfahan University Of Medical Sciences

Introduction

- Secondary hyperparathyroidism (SHPT) is a complication of CKD
- Elevations in (iPTH) concentration are observed early in the development of CKD
- Imbalances in mineral metabolism imbalances are associated with increased rates of mortality and morbidity rates in CKD patients

Introduction

- Calcitriol synthesis decreases in direct response to the decline in kidney function
- Calcitriol has a direct inhibitory effect on pre-proparathyroid hormone gene transcription, and a deficiency in this hormone results in a cascade of events that include decreased calcium absorption and an increase in parathyroid hormone (PTH) production

Impaired renal synthesis of active vitamin D

> Decreased GI absorption of calcium

 PTH stimulates bone resorption and release of phosphorus

KIDNEY

Loss of kidney function and impaired renal excretion of phosphorus

Dialyzer removes phosphorus from the blood

Dialysis removal not sufficient to reach target range

GUT

Dietary phosphorus absorption

Dietary changes:

Reduce intake of phosphorus and phosphate additives

 Increased protein requirement necessitates dietary phosphorus

Phosphate binders:

Reduce phosphorus absorption

High pill burden and adverse GI effects

Bone resorption releases stored phosphorus

Vitamin D:

Increases calcium and suppresses PTH

 Can increase phosphorus absorption from gut

Calcimimetics:

Suppress PTH-induced bone turnover and phosphorus release

 Possible hypocalcemia and GI symptoms

Treatments and Limitations

Source of

High

Phosphorus

Management of Hyperphosphatemia in End-Stage Renal Disease: A New Paradigm

Box 2. Novel Paradigm for Hyperphosphatemia Management in CKD-MBD

Aggravating factors

[↑] Phosphate

α-klotho

 □ Calcium

☆ FGF-23

Acidosis

1 Oxyphil

α-klotho

₽ FGFR1

ग्रे ग्रे Oxyphil

J J α-klotho

8.8 FGFR1

Normal gland

Diffuse hyperplasia Early nodularity Nodular hyperplasia Single nodular gland

Diffuse hyperplasia

Polyclonal nodular hyperplasia

Monoclonal nodular hyperplasia

U CaSR

Cash

J VDR

J J VDR

J DBP

A A DBP

û 1α-hydroxylase

û û 1α-hydroxylase (10X)

24-hydroxylase

↓ ↓ 24-hydroxylase (1/10X)

"Vitamin D hunger state"

Nutritional vitamin D plus

(Calcimimetics or VDRA or Combination)

- ₽ ₽ FGFR1

û û 25D û 1,25D

û û 25D û û 1,25D

û û 25D û û û 1,25D

↓ ↓ CaSR

- **₽₽VDR**
- J J DBP
- û û 1α-hydroxylase (10X)
- ↓ ↓ 24-hydroxylase (1/10X)

Reduction of parathyroid gland volume

ûû FGFR1 ûû CaSR ûû VDR

① ① ① FGFR1 ① ① ① CaSR ① ① ① VDR

utrients 2018, 10, 1890

Treatment of secondary hyperparathyroidism

- Calcitriol and calcimimetics can effectively reduce PTG volume in SHPT and concurrently increase VDR and CaSR expression to improve the efficient SHPT treatment
- NVD supplement meets the demand of parathyroid 25D requirement and lower PTH by dramatically increasing intra-gland 1,25D

Treatment of secondary hyperparathyroidism

- Decreased renal production of calcitriol (1,25vitamin D3), hypocalcemia, and hyperphosphatemia are the major contributing factors to the development of secondary hyperparathyroidism
- Management of secondary hyperparathyroidism has included the use of active vitamin D or vitamin D analogs for the suppression of parathyroid hormone (PTH) secretion

PTH-Lowering Agents

- Vitamin D Vitamin D sterols and calcimimetics are specific PTH-lowering agents that act directly on the parathyroid gland to inhibit PTH secretion
- calcitriol and other active vitamin D sterols, paricalcitol, doxercalciferol,
 and other analogs, are effective in reducing PTH levels

Nutritional Vitamin D

- NVD, both the cholecalciferol and calcifediol supplements are effective in increasing the total and free 25D level and are associated with serum PTH level declin
- The 2017 KDIGO Guideline suggests that VDD should be corrected if CKD stage 3 to 5 not yet dialysis patients have a progressive or persistently high PTH level
- NVD had a positive effect as an adjuvant therapy with calcitriol and calcimimetics in treating SHPT in dialysis patients

Nutritional Vitamin D

- Suppression of PTH secretion with native vitamin D to control SHPT may not be enough and the use of active vitamin D analogs or other PTH-lowering agents is required
- Native vitamin D continues to be used in CKD patients as other actions beyond treatment of SHPT have been considered

Calcitriol

- Calcitriol is a classic treatment to control PTH levels in patients with SHPT
- Both oral and parenteral forms of calcitriol have been effective in treating and preventing secondary hyperparathyroidism
- Current clinical practice is focused on developing therapies that do not cause increased body burdens of calcium and phosphorus

25-dihydroxyvitaminD2 (Paricalcitol)

- Paricalcitol, a selective vitamin D analogue, was demonstrated to only have a minor effect on vitamin D receptors in the intestine and bone
- Paricalcitol has been proved to be an effective treatment to control PTH levels and reduce absorption of calcium and phosphorus
- Paricalcitol was shown to be effective at reducing PTH concentrations without causing significant hypercalcemia or hyperphosphatemia

Paricalcitol

Paricalcitol is able to effectively inhibit PTH synthesis and parathyroid hyperplasia, but its effect on the intestine and bone is only 1/10 of that of calcitriol

Experimental and Therapeutic Medicine
July 24, 2020 https://doi.org/10.3892/etm.2020.9044

Calcimimetics

- Calcimimetics activate the calcium-sensing receptor to inhibit calcium-regulated PTH secretion, effectively mimicking or potentiating the effects of extracellular calcium
- By reducing PTH, calcimimetics also decrease bone resorption and thus decrease the contribution of serum phosphorus from bone

Calcimimetics

- Natural calcimimetics such as magnesium and other inorganic compounds act directly at the CaSR in the parathyroid gland, decreasing PTH secretion(calcimimetics type 1)
- other positive allosteric modulators of the CaSR, classified as type II, bind to a site distinct from the physiological ligand, rendering the CaSR more sensitive to calcium, so that inhibition of PTH secretion is achieved at lower calcium concentration

Calcimimetics

- calcimimetics offer minimal (cinacalcet) to no (etelcalcetide) pill burden
- Etelcalcetide shows some advantages over cinacalcet
 - Stronger efficacy profile
 - Longer half-life (three times a week at the end of hemodialysis)
 - Intravenous mode of administration

Cinacalcet

- Cinacalcet, a second-generation calcimimetic agent, is a positive allosteric modulator of the calcium-sensing receptor that increases its sensitivity to extracellular calcium by lowering the threshold for activation by extracellular calcium ions
- This mechanism lowers PTH synthesis and secretion

limitations of calcimimetics

- Hypocalcemia
- Nausea/vomiting
- Diarrhea
 - ✓ Improvement in GI tolerability of cinacalcet can be achieved by administration with meals

Paricalcitol OR Cinacalcet

- Cinacalcet significantly decreased the serum calcium levels compared with paricalcitol
- serum phosphate levels were relatively higher with paricalcitol compared with cinacalcet
- paricalcitol was more cost-effective than cinacalcet and that paricalcitol
 was simultaneously more effective in achieving the target levels of PTH

- بیمار اقای ۴۷ ساله مورد ESRD از سال ۱۳۷۴ در سن ۲۱ سالگی به علت نا مشخص
 - ◄ بيمار در ابتدا ١١ ماه همودياليز شـده اسـت
 - حر سال ۷۵ پیوند کلیه از غریبه زنده
 - ◄ در سال ۹۴ با تشخیص لنفوم ۱۲ جلسه کمو تراپی شده است
- ◄ به دنبال کموتراپی و تغییر داروها دچار افزایش کراتینین شده و مجددا در سال ۹۵ تحت همودیالیز قرار میگیرد

■ در ازماتیشات سال ۹۶

► PTH: 804 (12_65)

■ Ca:8.9

► Ph: 6.2

- سیناکلست با دوز ۳۰ میلی گرم روزانه
- سولامر۸۰۰ با دوز ۲ عدد با صبحانه ۲ با ناهار ۱ با شام شروع شد
 - كلسيم تجويز نشد

► PTH بیماردر ویزیت های بعدی همچنان بالا بود و دوز سیناکلست افزایش داده شد

■ PTH: 1470 (12_65)

Ca:7.3

► Ph: 4.5

■ سیناکلست با دوز ۶۰ میلی گرم با صبحانه یک عدد و باشام دو عدد

■ سولامر ۲ عدد با صبحانه ۱ با شام

 ■ بیمار سیناکلست را به این صورت تحمل نکرد و با دوز ۳۰ میلی گرم ۳ عدد صبح ۳ عدد شب ادامه داده شد

سال ۹۷

- ► PTH: 345 (12_65)
- **Ca:5.5**
- ► Ph: 3.9
 - سیناکلست کاهش دوز داده شد یک روز ۱۵۰ میلی گرو و روز بعد ۱۲۰ میلی گرم
 - سولامر۲۰۰ قطع
 - کلسی تریول ۲۵/۰ میلی گرم هفته ای ۲ بار ۳ عدد

■ سال ۹۷

- PTH: 880 (12_65)
- **Ca:7.5**
- ► Ph: 3.4

- افزایش دوز سیناکلست تا ۱۵۰ میلی گرم روزانه
 - کلسیم روزانه ۵ عدد با شکم خالی
 - افزایش کلسیتریول ۲ بار در هفته هر بار ۴ عدد

سال ۹۸

- ► PTH: 367 (12_65)
- **Ca:8.7**
- ► Ph: 3.6

- کلسیتریول ۲۵/۰ هفته ای ۲ با ۶ عدد
- کلسیم کربنات روزانه ۳ عدد + پودر سوپراکل ۱۰۰۰ یک عدد شکم خالی
 - سیناکلست ۳۰ میلی گرم ۴ عدد روزانه

سال ۹۸

■ PTH: 134 (12_65)

Ca:8.5

► Ph: 3.7

- سیناکلست ۳۰ میلی گرم از ۴ عدد به ۳ عدد کاهش یافت
- کلسیتریول ۲۵/۰ دو بار در هفته هر بار ۵ عدد (کاهش دوز)

■ سال ۹۹

► PTH: 103 (12_65)

■ Ca:8.7

► Ph: 7.07

- سولامر ۸۰۰ سه عدد با هر وعده غذایی (شروع)
- کلسیتریول ۲۵/۰ میلی گرم ۲ بار در هفته ۳ عدد (کاهش دوز)

- سال ۹۹
- در طی چندین ماه فسفر کاهش یافت
 - دوز سولامر کاهش داده شد

- ► PTH: 332 (12_65)
- **■** Ca:8.9
- ► Ph: 4.3

- سولامر ۲ عدد با صبحانه ۳ با ناهار
 - کربنات کلسیم ۳ عدد با شام
- کلسیتریول هفته ای ۲ بار یک عدد

سال ۱۲۰۰

PTH: 507 (12_65)

Ca:8.7

Ph: 2.7

سولامر قطع شد کلسیم ۳ عدد روزانه با شکم خالی کلسیتریول هفته ای ۲ بار ۱ عدد

سال ۱۴۰۰

PTH: 185 (12_65)

Ca:9

Ph: 4

34