Osteoporosis in CKD (pathogenesis)

Dr. A Atapour

Nephrologist

Associate Proff.

Isfahan University Of medical sciences

OPEN ACCESS

EDITED BY

Juan Miguel Díaz Tocados, Lleida Institute for Biomedical Research (IRBLleida), Spain

REVIEWED BY

Eleanor DeLand Lederer, University of Texas Southwestern Medical Center, United States

*CORRESPONDENCE

[†]These authors have contributed equally to this work

RECEIVED 02 March 2023 ACCEPTED 23 May 2023 PUBLISHED 05 June 2023

Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis

Armando Aguilar^{1,2†}, Laia Gifre^{3†}, Pablo Ureña-Torres⁴,
Natalia Carrillo-López⁵, Minerva Rodriguez-García⁶,
Elisabeth Massó^{7,8}, Iara da Silva^{7,8}, Víctor López-Báez^{7,8},
Maya Sánchez-Bayá^{7,8}, Águeda Prior-Español³, Marina Urrutia^{7,8},
Javier Paul^{7,8}, Misael C. Bustos⁹, Anna Vila^{7,8}, Isa Garnica-León²,
Juan F. Navarro-González^{10,11}, Lourdes Mateo³ and
Jordi Bover^{7,8}*

The importance of the bone component of CKD-MBD

- The "old" cross-talk between kidney and bone (classically known as "renal osteodystrophies")
- The cardiovascular system
- Independently related to cardiovascular disease and high mortality rates

Bone cells

- The most important cells of bone tissue
 - Osteoblasts (OBs)
 - Osteoclasts (OCs)
 - Osteocytes
 - Bone-lining cells.

Osteoblasts (OBs)

- OBs develop from pluripotential mesenchymal stem cells (MSCs).
- Bone morphogenic proteins (BMPs) and the Wnt signaling pathway are related to OB differentiation.
- The canonical Wnt signaling pathway induces transcription factors that favor
 OB differentiation
- the non-canonical Wnt pathway inhibits the differentiation of MSCs to other cell types

The main function of OBs

- Bone matrix through the synthesis
- Secretion of type 1 collagen
- Non-collagenous proteins
- Releasing phosphate contained in their vesicles
 - Compose the main mineral of cortical bone (calcium hydroxyapatite crystals)

Osteoclasts (OCs)

- Derive from precursor cells of the monocyte-macrophage lineage
- Differentiation and survival require the
 - Macrophage colony-stimulating factor (M-CSF)
 - Receptor activator of NF-κB ligand (RANKL)
- OB-synthesized osteoprotegerin (OPG) acts
 - High -affinity decoy receptor for RANKL
 - Inhibiting RANKL action on the OC-RANK receptor

The ratio between RANKL and OPG determines the degree of osteoclastic differentiation

Osteoclasts (OCs) continue

- The main function of the OC is bone resorption
- Activated by
 - Binding to the bone matrix
 - Polarizing and forming podosomes and different membrane domains
- Each of these domains is extremely important for
 - Bone resorption
 - Collagen degradation
 - Return of calcium and phosphate to the bloodstream

Osteocytes

- Osteocytes (mature OBs) represent 95% of all bone cells.
- Osteocytes influence OBs in two directions
 - Upregulating them through the production of messengers such as nitric oxide and prostaglandin E2
 - Downregulating them through the secretion of sclerostin
- Osteocytes the main source of FGF23
 - Suppressing phosphate reabsorption and calcitriol synthesis in the kidney

Armando Aguilar, 05 June 2023, Frontiers in Physiology

Review

Osteoporosis in Patients with Chronic Kidney Diseases: A Systemic Review

Chia-Yu Hsu 1,2,† D, Li-Ru Chen 3,4,† and Kuo-Hu Chen 5,6,* D

 This review was modeled based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.

• Chronic kidney disease (CKD) is associated with the development of mineral bone disorder (MBD), osteoporosis, and fragility fractures.

Osteoporosis

- WHO defines osteoporosis as a T score ≤ -2.5.
- CKD is an independent risk factor of osteoporosis
- The prevalence of osteoporosis was 31.8% among CKD G3–5 patients
- National Health and Nutrition Examination Survey (NHANES III)
 - Osteoporosis was twice as common in those with eGFR < 60 mL/min
 than those with eGFR > 60 mL/min

The Longitudinal Aging Study Amsterdam (LASA)

- Amsterdam (LASA) survey
 - Increase incident fracture risk
 - Greater fracture risk after adjusting age, race, and BMD
 - Incidence of hip fracture in hemodialysis (HD) group was higher than that in peritoneal dialysis (PD) or KT groups
- The consequence of fractures increased the mortality rate in CKD patients with non-dialysis and with dialysis
- Thus, the goal
 - Prevention CKD-induced MBD
 - Treating subsequent osteoporosis

Characteristics of CKD-MBD

- CKD-MBD describes abnormalities
 - Mineral metabolism
 - Skeletal health
 - Soft tissue calcifications

Disorders of Calcium Balance

- Hypocalcemia is common in CKD patients.
- Total serum calcium concentration decreases due to
 - Phosphate retention
 - Decreased 1,25(OH)2D (calcitriol) concentration
 - Resistance to the calcemic actions of PTH on bone
- Calcium -sensing receptor (CaSR) on parathyroid glands
 - Contributes to increased PTH secretion and abnormal bone remodeling

Calcium balance

- Serum calcium alone cannot serve as a proxy measurement of the wholebody calcium balance.
- Whole -body calcium retention
 - Deficit total calcium inputs subtract total body loses
- A positive balance may increase vascular calcification and cardiovascular events
- A negative balance may increase the risk of osteoporosis and fracture

Disorder of Phosphorus Metabolism

- Phosphate retention begins early in CKD
 - Hypocalcemia
 - Decreasing calcitriol synthesis
 - Increasing PTH gene expression
- Secondary hyperparathyroidism (SPTH)
- Serum phosphate levels
- Renal proximal tubular phosphate resorption
 - PTH and fibroblast-growth-factor (FGF)-23
- Serum phosphate typically remain normal until eGFR < 20 mL/min/1.73 m2

Disorder of Parathyroid Hormone Metabolism

- The prevalence of SPTH increases as CKD progress
 - PTH included phosphate retention
 - Decreased free ionized calcium level
 - Decreased calcitriol level
 - Increased FGF-23 level
 - Reduced expression of vitamin D receptors (VDRs)
 - Calcium -sensing receptors (CaSRs)
 - FGF receptors
 - Kloth in the parathyroid glands.

Serum intact PTH (iPTH) typically remains normal until the eGFR decreases to approximately 45 mL/min/1.73 m2

Disorder of Vitamin D Metabolism

- A serum 25(OH)D (calcidiol) level < 30 nmol/L indicates vitamin D deficiency
- Vitamin D deficiency is associated with cardiovascular events
- Calcitriol level started to fall until eGFR was <40 mL/min/1.73 m2

• The primary cause why calcitriol level declines is the increase in FGF-23 concentration, rather than the loss of functioning renal tissue

Factors affecting bone strength in CKD-MBD

Factor	Main Effect	Category
↓ Kloth	↑ FGF-23 level [13]	Humoral
↑ FGF-23 ¹	↑ phosphate excretion [14] ↓ calcitriol synthesis [14,15]	Humoral
↑ Sclerostin	↓ bone formation [14,16] ↑ osteoclastogenesis [17]	Humoral
↑ dickkopf1	↓ bone formation [16,18]	Humoral
↑ phosphate	↑ SPTH ³ [19] ↓ calcitriol synthesis [20]	Mineral
↑ uremic toxins ²	↓ PTH receptor [21] ↑ skeletal resistance to PTH [21]	Uremia
↓ 1,25(OH) ₂ D	↑ PTH secretion [20,22] ↓ calcium [23]	Humoral
↓ calcium	↑ SPTH [23] ↑ abnormal bone remodeling [23]	Mineral
†Skeletal resistance to PTH	↑ SPTH [24]	Humoral

TMV system

- Kidney Disease: Improving Global Outcomes (KDIGO) group recommends three parameters
 - Bone turnover
 - Mineralization
 - Volume
- Bone biopsy is the gold standard for the diagnosis and classification of bone diseases in CKD

TMV Characteristics of Renal Osteodystrophy

Bone turnover

 Rate of skeletal remodeling, or the ratio between bone formation, and bone resorption

Mineralization

 How well bone collagen becomes calcified during the formation phase of skeletal remodeling

Volume

- The amount of bone per unit volume of tissue
- Bone strengths is determined by bone quantity, and bone quality
 - Bone quality refers to the structure and material parameters that enables bone to bear load and resist fracture

Bone Turnover in CKD

- The high bone turnover
 - Osteitis fibrosa cystica and mixed uremic osteodystrophy
- The low in patients
 - Adynamic bone disease and osteomalacia
- Evaluation of Bone Turnover
 - Very high PTH levels (≥585 pg/mL {osteitis fibrosa }
 - Very low PTH levels (<100 pg/mL) { adynamic bone disease}
- PTH of >323 pg/mL high from non-high bone turnover
- PTH < 103.8 pg/mL low from non-low turnover
- KDIGO suggests using PTH trends instead of absolute targets

Evaluation of Bone Strength

- Dual-energy X-ray absorptiometry (DXA)
 - Bone quantity
 - bone quality.
- Non -invasive 3D imaging techniques that can detect microarchitecture and mineral density
 - Peripheral quantitative computed tomography (pQCT)
 - High resolution pQCT (HRpQCT)
 - Micromagnetic resonance imaging (microMRI)

Review

Systemic Activation of Activin A Signaling Causes Chronic Kidney Disease-Mineral Bone Disorder

Toshifumi Sugatani

Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid, St. Louis, MO 63110, USA; sugatani_t@wustl.edu; Tel.: +1-314-286-2863; Fax: +1-314-286-2894

Received: 2 August 2018; Accepted: 21 August 2018; Published: 23 August 2018

Bone vital functions

- Bone is a dynamic tissue
 - Bone remodeling
- Regulated by mature osteoclasts and osteoblasts controlled
 - Cytokines
 - Chemokines
 - Hormones
 - Biochemical stimuli
- Osteoclasts remove the damaged bone
- Osteoblasts replace the resorbed matrix and mineralize it

Skeletal fragility

- Osteoporosis
- Imbalance in bone remodeling
 - Favoring osteoclast activity
- Significant cause of morbidity and mortality world wide

What is Activin A?

- Activin A is a homodimer
 - βA-βA subunits that belongs
 - TGF-β superfamily of cytokines
- Activin A was initially discovered related to its capacity to induce the release of follicle-stimulating hormone
 - High affinity to activin receptor type IIA (ActRIIA)
 - Less affinity to activin receptor type IIB (ActRIIB)

Known as the activin receptor-like kinase 4 (ALK4)

What is function of Activin A in CKD mouse models?

- High -turnover osteopenia caused by increased osteoclast numbers and activated osteoclastic bone resorption compared to that of control mice
- Treatment with RAP-011, a ligand trap of ActRIIA
 - An antiresorptive effect in CKD mouse models
- Activin A seems to be a positive regulator for osteoclastic development and bone resorption in vivo

Activin A other vital biological processes in development and homeostasis

- Regulation of embryogenesis
- Development of the reproductive system
- Maintenance of pluripotent stem cells
- Regulation of immune response
- Wound healing
- Development of limbs
- Craniofacial development

Activin a Biology in Osteoclastogenesis

- In the skeleton, activin A is secreted by osteoblasts and osteoclasts
- Have fundamental roles in both embryonic skeletal development and postnatal bone homeostasis

Activation of activin A signaling stimulates RANKL-induced osteoclast development and function in CKD

Activin a Biology in Osteoblast Development and Function

- Smad-dependent TGF-β signaling stimulates proliferation, chemotaxis and early differentiation of osteoblasts from mesenchymal stem cells to immature osteoblasts.
- it suppresses osteoblast maturation, mineralization and transition into osteocyte
- Inhibitory effects on TGF- β for mature osteoblasts and bone mineralization has been well-established.
- The roles of activin A for osteoblast differentiation and function

از تمامی دوستان خواهشمندم

اصلا خسته نباشید