Amoxicillin crystalluria and amoxicillin-induced crystal nephropathy

- Amoxicillin, an antibiotic widely used for treating and preventing infection,
- was first introduced in the1980s
- usually administered orally
- can also be given i.v. for preoperative prophylaxis or for such as bone and joint infections, meningitis, and endocarditis

• In these cases, high-dose i.v. amoxicillin (HDIVA; >150 mg/kg or 8 g/d) is recommended at the start of treatment

- (AKI) occurs through 2 primary mechanisms.
- first: a cellmediated immune response directed against nephritogenic antigens, specifically targeting amoxicillin or its metabolites inthat context, resulting in acute interstitial nephritis

- The second consists of the: precipitation of soluble amoxicillin into amoxicillin trihydrate crystals in the urine, to as amoxicillin crystalluria (AC).
- is shared with other b-lactams, notably ampicillin and third-generation cephalosporins

 AC can lead to AKI and is known as amoxicillininduced crystalline nephropathy(AICN) when the kidney injury is attributed to thetubular precipitation of amoxicillin into amoxicillin trihydrate crystals. • amoxicillin excreted unchanged in the urine by glomerular filtration (93%) and tubular secretion (7%), the latter being reduced when probenecidis administered.

 The renal excretion rate of amoxicillin follows the same trend as amoxicillin blood levels (peak and then a slow decrease) • it culminates at the amoxicillin blood level peak whose determinants are the administered dose, the duration of i.v. infusion, and the residual amoxicillin blood level.

 oral absorption of amoxicillin is nonlinear and saturable in adults, cases of AC occur after HDIVA administration (typically 12 g/d or more in adults) • 1 mg/ml increase in amoxicillin blood level in patients treated with HDIVA for endocarditis was associated with the onset of AC in this population

 AC has been described after a single administration of low doses (2 g) of i.v. amoxicillin for surgical prophylaxis • In those cases, i.v. amoxicillin was administered instantaneously, while it is recommended to administer it over a 30- to 60-minute period, leading to a very rapid and high rise in amoxicillin blood levels and in renal excretion

- other factor can increase the urinary amoxicillin level.
- absolute hypovolemia—which may also contribute to increased amoxicillin blood level—or
- Relative hypovolemia, such as sepsis and fasting before surgery

• In chronic heart failure, in addition to relative hypovolemia, prescription of urine-acidifying drugs such as furosemide can be an additional contributing factor.

• patients receiving HDIVA, increased urine density tended to increase the risk of AC

- factor may be the augmented renal clearance of amoxicillin.
- Augmented renal clearance is observed in critically ill patients, particularly during sepsis.
- defined by increased creatinine clearance and increased elimination of substances including drugs excreted by the kidney.

- solubility in urine is also altered by its ionization state, driven by changes in urinary pH,.
- The solubility is divided by 2 when the urinary pH drops from 7 to 6.

 association between decreased urine pH and the onset of AC

- prescription of angiotensin-converting enzyme (ACE) inhibitors was associated with the onset of AC in univariate analysis.
- no evidence to suggest that ACE inhibitors directly alter urinary pH.

 onset of AC is not always associated with the onset of AKI

- In case reports or
- retrospective case series, the diagnosis of AICN was based on the simultaneous onset of AC and AKI, with no other apparent cause of AKI identified.

 2 prospective studies with the same design and statistical analysis: demonstrated a statistical association between the onset of AC and AKI associated factors:septic shock and treatment by vancomycin • 7 patients underwent kidney biopsy:6 displaying acute tubular necrosis and 1 patient showing tubular vacuolization

• first histologic evidence of amoxicillin crystallizationin the tubular lumen was recently documented.

- as amoxicillin trihydrate crystals using infrared spectroscopy
- electron microscopy direct visualization of tubule obstruction by amoxicillin crystals

 Kidney biopsy is rarely performed in AKI, when the clinical and paraclinical findings suggest acute tubular necrosis When the diagnosis of AICN was not considered, the AKI might have been attributed to sepsis, is not an indication for kidney biopsy, when the diagnosis of AICN was considered, the AKI was attributed to the nephrotoxicity of amoxicillin, is not an indication for kidney biopsy Some patients who developed AICN were not admitted to a nephrology department or were treated in hospitals without a nephrology department Concerning the biopsies performed, the crystals
 probably dissolved during the preparation of the
 paraffinembedded kidney sections, resulting in missed
 crystal detections.

• in AICN, AKI usually resolves quickly once amoxicillin is discontinued, reducing the benefit/risk ratio for biopsy.

Diagnosis of AC:

• typically described as the sudden onset of macroscopic hematuria associated with cloudy urine exhibiting a fine granular appearance. • Amoxicillin crystals :rarely be observed with the naked eye in urine

- associated with other nonspecific symptoms :dysuria, cystitis-like symptoms, back pain, or hypogastric pain.
- Back pain :suspicion of amoxicillin crystals trapped in the ureters and prompt anultrasound scan

• AC is usually : asymptomatic; notably macroscopic hematuria is not always observed.

• Microscopic hematuria : difficult to interpret in patients with urinary catheters.

• more than one-quarter of documented AC :did not develop hematuria.

• Non-nephrotic proteinuria and leukocyturia are frequently reported but were not statistically associated with AC.

• In all cases, the final diagnosis:

phase-contrast microscope with a polarized light device, the birefringence of crystals

- identification of amoxicillin crystals:
 fresh urine (first-morning urine in
 ambulatory patients or, in hospitalized patients, urine
 collected within 2 hours of emptying the bladder or
 urine bag)
- stored at room temperature and sent to the laboratory as soon as possible.

• If crystals are not clearly identified by the microscopic study:infrared spectroscopic analysis

- Amoxicillin trihydrate crystals :
- fine,nonpolarizing needles with pointed ends, or as thicker,monochromatically polarized rods, isolated or aggregated,forming "broom bush"-like structures

crystals may be associated with amoxicillin crystals :
 10% of cases (uric acid and/or calcium oxalate crystals)

Diagnosis of AICN

- No validated criteria exist for diagnosing AICN.
- First: coincidence between i.v. amoxicillin administration and the onset of AKI is of limited diagnostic utility.

• delay betweenamoxicillin exposure and the diagnosis of AICN ranging from 3.0 to 5.5 days.

- Second, hematuria is not systematically found in AICN
- cannot be used as an indirect marker of AC and thus a criterion for AICN diagnosis

 identification of amoxicillin trihydrate crystals are limited because the technique is not routinely implemented within most hospitals, and when urine samples are collected outside of normal working hours.

- Third:differential diagnoses are easy to rule out
- 2 remain difficult exclude:
- First:sepsis-induced AKI. Diagnosing is challenging ,lack of functional stress-related, and tissue-damage biomarkers

 Simultaneous development of at least 1 new organ dysfunction :suggest the diagnosis of sepsis-induced AKI • the onset of AKI more than 7 days after theonset of sepsis:

rules out the diagnosis of sepsis-induced

AKI

- The second: acute interstitial
- sometimes occur without extranephrological symptoms or laboratory markers, indicating hypersensitivity, difficult to distinguish from AICN

• itsonset after the initiation of amoxicillin therapy is often longer than that of AICN (within 10 days), and it is notassociated with HDIVA (not dose-dependent)

 In addition, the recovery time of kidney function after amoxicillin discontinuation in AICN is probably shorter than that observed in acute interstitial nephritis the recovery time of kidney function after amoxicillin discontinuation in AICN: probably shorter than that observed in acute interstitial nephritis the diagnosis of AICN remains largely presumptive:clinical context and clinical and biological parameters, include acidic urine pH, AC, and high amoxicillin blood levels • is probably strengthened in the event of rapid improvement (within 7 days) after the discontinuation of amoxicillin

Epidemiology of AC and AICN

- prevalence of AC ranging between 24.1% and 41.0%
- prevalence of AKI (not AICN) of between 17.9% and 47%,

- the onset of AC and AICN may be related to individual Susceptibilities
- Amoxicillin pharmacokinetics involve organic anion transporters 1 and 3, located on the basolateral membrane of kidney proximal tubular cells.

- Some patients have single nucleotide polymorphisms in these Transporters
- individuals with polymorphisms in the organic anion transporter genes may be more prone to develop AICN.

Treatment

- mainly based on stopping/reducing the dose of amoxicillin.
- Alkalinization of the urine may be suggested.
- onset of AC is statistically associated with the onset of AICN, and its prospective monitoring in patients treated with HDIVA could enable preventive strategies to be implemented to prevent AICN.